Discovering fuzzy association rules using fuzzy partition methods

نویسندگان

  • Yi-Chung Hu
  • Ruey-Shun Chen
  • Gwo-Hshiung Tzeng
چکیده

Fuzzy association rules described by the natural language are well suited for the thinking of human subjects and will help to increase the flexibility for supporting users in making decisions or designing the fuzzy systems. In this paper, a new algorithm named fuzzy grids based rules mining algorithm (FGBRMA) is proposed to generate fuzzy association rules from a relational database. The proposed algorithm consists of two phases: one to generate the large fuzzy grids, and the other to generate the fuzzy association rules. A numerical example is presented to illustrate a detailed process for finding the fuzzy association rules from a specified database, demonstrating the effectiveness of the proposed algorithm. q 2002 Elsevier Science B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolutionary algorithms and fuzzy sets for discovering temporal rules

A novel method is presented for mining fuzzy association rules that have a temporal pattern. Our proposed method contributes towards discovering temporal patterns that could otherwise be lost from defining the membership functions before the mining process. The novelty of this research lies in exploring the composition of fuzzy and temporal association rules, and using a multi-objective evoluti...

متن کامل

CPDA Based Fuzzy Association Rules for Learning Achievement Mining

This paper proposes a fusion model to reinforce fuzzy association rules, which contains two main procedures: (1) employing the cumulative probability distribution approach (CPDA) to partition the universe of discourse and build membership functions; and (2) using the AprioriTid mining algorithm to extract fuzzy association rules. The proposed model is more objective and reasonable in determinin...

متن کامل

Applying Fuzzy FP-Growth to Mine Fuzzy Association Rules

In data mining, the association rules are used to find for the associations between the different items of the transactions database. As the data collected and stored, rules of value can be found through association rules, which can be applied to help managers execute marketing strategies and establish sound market frameworks. This paper aims to use Fuzzy Frequent Pattern growth (FFP-growth) to...

متن کامل

Mining fuzzy periodic association rules

We develop techniques for discovering patterns with periodicity in this work. Patterns with periodicity are those that occur at regular time intervals, and therefore there are two aspects to the problem: finding the pattern, and determining the periodicity. The difficulty of the task lies in the problem of discovering these regular time intervals, i.e., the periodicity. Periodicities in the dat...

متن کامل

User Constraints in Discovering Association Rules Mining

This paper introduces a new algorithm called User Association Rules Mining (UARM) for solving the problem of generating inadequate large number of rules in mining association technique using a fuzzy logic method [1, 2]. In order to avoid user’s defined threshold mistakes, the user has flexibility to determine constraints based on a set of features. In comparison with other well-known and widely...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Knowl.-Based Syst.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2003